پیش‌بینی جریان ورودی به سد علویان با استفاده از سیستم تطبیقی فازی-عصبی بهینه‌شده

نویسنده

چکیده مقاله:

در این تحقیق با استفاده از اطلاعات روزانه، هفتگی، 10 روزه و ماهانه آب ورودی به سد علویان در شمال غرب ایران، جریان بهنگام آب ورودی به مخزن با استفاده از سیستم تطبیقی فازی-عصبی بهینه‌شده (OANFIS) پیش‌بینی‌شده است. به‌منظور تعیین تعداد و فواصل زمانی ورودی‌های مدل، از دو الگوریتم جستجوی ترتیبی (Sequential Search) و جستجوی جامع (Exhaustive Search) جهت حداقل نمودن خطای پیش‌بینی استفاده‌شده است. در جستجوی ترتیبی 17 مدل در مقیاس زمانی روزانه، هفتگی، 10 روزه و ماهانه با ورودی جریان آب به مخزن سد در گام‌های زمانی مختلف،به‌عنوان ورودی و جریان در زمان V(t) به‌عنوان خروجی، توسعه و مقایسه شده است. در جستجوی جامع نیز ترکیب 2 از 10 و 3 از 10 که شامل 45 و 120 مدل در گام زمانی V(t-1) تا V(t-10) به‌عنوان ورودی و خروجی در گام زمانی V(t)، توسعه و مقایسه شده است. به‌منظور ارزیابی کارایی مدل‌های توسعه‌یافته، از شاخص‌های آماری و آزمون نکویی برازش استفاده‌شده است. در الگوریتم ترتیبی و مقیاس روزانه در اولین گام ورودی V(t-1) با RMSE صحت یابی برابر 211/0 میلیون مترمکعب، در گام دوم ترکیب ورودی V(t-1) و V(t-8) با RMSE صحت یابی برابر 187/0 میلیون مترمکعب و در گام سوم V(t-4),V(t-3),V(t-1) با RMSE صحت یابی برابر 5247/1 میلیون مترمکعب انتخاب‌شده است. در مقیاس هفتگی در اولین گام ورودی V(t-1) با RMSE صحت یابی برابر 175/0 میلیون مترمکعب، در گام دوم ترکیب ورودی V(t-1) و V(t-3) با RMSE صحت یابی برابر 192/0 میلیون مترمکعب و در گام سوم V(t-9),V(t-8),V(t-1) با RMSE صحت یابی برابر 3912/0 میلیون مترمکعب انتخاب‌شده است. در کلیه مدل‌های بهینه در مقیاس‌های زمانی موردبررسی، ورودی V(t-1) به‌عنوان یک متغیر تأثیرگذار حضورداشته و خروجی مدل از حساسیت بالایی نسبت به تغییرات آن‌که دارای کمترین فاصله زمانی با خروجی نیز می‌باشد، برخوردار است.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیش‌پردازش پارامترهای ورودی به شبکه‌ی عصبی مصنوعی و سیستم استنتاج تطبیقی عصبی- فازی با استفاده از رگرسیون گام به گام و گاماتست به‌منظور تخمین تبخیر

فرایند تبخیر به­علت نیاز به فاکتورهای اقلیمی مختلف و اثر متقابل این فاکتورها بر یکدیگر،یک پدیده­یغیرخطی و پیچیده است. یکی از مراحل پیچیده در مدل­سازی غیرخطی، پیش­پردازش پارامترهای ورودی برای انتخاب ترکیبی مناسب از آن­ها است. پیش­پردازش داده­ها سبب کاهش مراحل سعی و خطا و شناخت مهم­ترین پارامترهای مؤثر بر پدیده­ی مورد نظر به­منظور مدل­سازی با استفاده از روش­های هوشمند می­شود. در این پژوهش از دو ر...

متن کامل

پیش‌بینی جریان ورودی به مخزن سد کمال صالح با استفاده از محاسبات نرم

پیش­بینی جریان ورودی به مخازن سدها به منظور انجام برنامه­ریزی و بهره­برداری مناسب منابع آب لازم و ضروری است. در این تحقیق عملکرد دو مدل هوشمند شبکه­های عصبی مصنوعی و سامانه استنتاج فازی- عصبی تطبیقی مبتنی بر روش دسته­بندی تفریقی در پیش­بینی جریان ورودی به سد کمال صالح در استان مرکزی مورد بررسی قرار گرفت. بدین منظور از داده­های جریان و بارش در یک دوره آماری 31 ساله (1390- 1360)استفاده شد و پیش­ب...

متن کامل

پیش‌بینی جریان ورودی به مخزن سد کمال صالح با استفاده از محاسبات نرم

چکیده پیش­بینی جریان ورودی به مخازن سدها به منظور انجام برنامه­ریزی و بهره­برداری مناسب منابع آب لازم و ضروری است. در این تحقیق عملکرد دو مدل هوشمند شبکه­های عصبی مصنوعی و سامانه استنتاج فازی- عصبی تطبیقی مبتنی بر روش دسته­بندی تفریقی در پیش­بینی جریان ورودی به سد کمال صالح در استان مرکزی مورد بررسی قرار گرفت. بدین منظور از داده­های جریان و بارش در یک دوره آماری 31 ساله (1390-...

متن کامل

شبیه‌سازی جریان روزانة ورودی به سد طالقان با استفاده از مدل‌های همراشتین-واینر

سیستم‌های همراشتین - واینر از جمله مدل‌هایی هستند که توانایی تشریح سیستم‌های دینامیک غیرخطی را دارند. این مدل‌ها، مدل‌هایی غیرخطی‌اند که به‌واسطة سادگی و مفهوم فیزیکی‌شان، در دامنة وسیعی از علوم کاربرد دارند. در این تحقیق، برای اولین بار در حوزة هیدرولوژی و مدیریت منابع آب، سه ساختار مختلف از این مدل‌ها به‌منظور شبیه‌سازی جریان روزانة ورودی به مخزن سد طالقان با استفاده از داده‌های روزانة دما و ...

متن کامل

پیش‌بینی کیفی رودخانه‌ها با استفاده از سیستم استنتاج فازی-عصبی تطبیقی

اخیرأ استفاده از مدل‌های ریاضی برای شبیه‌سازی کیفیت آب رودخانه‌ها توسعه زیادی یافته که به دلیل پیچیدگی و تعدد فرایندهای کیفی منابع آب سطحی و وجود ضرایب و ثابت‌های شیمیایی و بیولوژیکی متعدد، استفاده از سیستم استنباط فازی-عصبی تطبیقی، روشی نو جهت پیش‌بینی کیفی رودخانه‌هاست. در این مقاله ضمن بیان مبانی این سیستم به‌منظور پیش‌بینی کیفی آبهای سطحی، کاربرد آن با مجموعه‌ای از داده‌های 16 ساله از اکسیژ...

متن کامل

تخمین انرژی شکست بتن با استفاده از روش های سیستم استنتاج تطبیقی فازی عصبی هادی

انرژی شکست بتن GF، یکی از پارامترهای اساسی شکست و مُعرّف مقاومت ترک‌خوردگی بتن است،همچنین یکی از ویژگی های مهم بتن در ملاحظات طراحی سازه های بتنی است. در سال های اخیر با بهره گیری از روش های مختلف آزمایشگاهی، پارامتر های شکست بتن مورد بررسی قرار گرفته است؛ نقش این پارامتر ها در طراحی سازه ها از اهمیت ویژه ای برخوردار است. در این مقاله مدل شکست بر‌اساس سیستم تطبیقی فازی عصبی (ANFIS) برای تخمین پا...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 47  شماره 3

صفحات  439- 448

تاریخ انتشار 2016-10-22

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023